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Abstract. Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as
swollen red giants surrounded by cool extended atmospheres.  The nuclear reactions in their
cores create carbon, nitrogen and oxygen, which are transported by convection to the outer
envelope of the stellar atmosphere.  As the star finally collapses to become a white dwarf, this
envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules.
The physics, dynamics, and chemistry of these nebulae are poorly understood and have
implications not only for our understanding of the stellar life cycle but also for organic
astrochemistry and the creation of prebiotic molecules in interstellar space.

We are working toward generating three-dimensional models of planetary nebulae (PNe),
which include the size, orientation, shape, expansion rate and mass distribution of the nebula.
Such a reconstruction of a PN is a challenging problem for several reasons.  First, the data
consist of images obtained over time from the Hubble Space Telescope (HST) and spectra
obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American
Observatory (CTIO).  These images are of course taken from a single viewpoint in space, which
amounts to a very challenging tomographic reconstruction.  Second, the fact that we have two
disparate and orthogonal data types requires that we utilize a method that allows these data to be
used together to obtain a solution.  To address these first two challenges we employ Bayesian
model estimation using a parameterized physical model that incorporates much prior information
about the known physics of the PN.

In our previous works we have found that the forward problem of the comprehensive model
is extremely time consuming.  To address this challenge, we explore the use of a set of
hierarchical models, which allow us to estimate increasingly more detailed sets of model
parameters.  These hierarchical models of increasing complexity are akin to scientific theories of
increasing sophistication, with each new model/theory being a refinement of a previous one by
either incorporating additional prior information or by introducing a new set of parameters to
model an entirely new phenomenon.  We apply these models to both a simulated and a real
ellipsoidal PN to initially estimate the position, angular size, and orientation of the nebula as a
two-dimensional object and use these estimates to later examine its three-dimensional properties.
The efficiency/accuracy tradeoffs of the techniques are studied to determine the advantages and
disadvantages of employing a set of hierarchical models over a single comprehensive model.

INTRODUCTION

We are only beginning to understand the importance of the later stages of a star’s
existence.  Stars with initial masses between 0.8 and 8 solar masses end their lives as
swollen red giants on the asymptotic giant branch (AGB) with degenerate carbon-
oxygen cores surrounded by a cool extended outer atmosphere.  Convection in the
outer atmosphere dredges up elemental carbon and oxygen from the deep interior and
brings it to the surface where it is ejected in the stellar winds.  As the star ages, the



core eventually runs out of fuel and the star begins to collapse.  During this collapse,
much of the outer envelope is expelled from the core and detaches from the star
forming what is called a planetary nebula (PN) and leaving behind a remnant white
dwarf.  Despite the wealth of observations the physics and dynamics governing this
expulsion of gas are poorly understood making this one of the most mysterious stages
of stellar evolution (Maddox, 1995; Bobrowsky et al., 1998).

The carbon and oxygen ejected in the stellar wind and expelled with the PN during
the star’s collapse are the major sources of carbon and oxygen in the interstellar
medium (Henning & Salama, 1998).  It is now understood that complex organics, such
as polycyclic aromatic hydrocarbons (PAHs) (Allamandola et al., 1985), readily form
in these environments (Wooden et al., 1986; Barker et al. 1986).  Thus the formation,
evolution and environment of PNe have important implications not only for our
understanding of the stellar life cycle but also for organic astrochemistry and the
creation of prebiotic molecules in interstellar space.  In addition, this material will
eventually be recycled to form next-generation stars whose properties will depend on
its composition.

To better understand the chemical environment of the PN, we need to understand its
density distribution as a function of position and velocity.  However, without
knowledge of the distances to planetary nebulae (PNe), it is impossible to estimate the
energies, masses, and volumes involved.  This makes knowledge of PN distances one
of the major impasses to understanding PN formation and evolution (Terzian, 1993).

More recently, detection of the expansion parallax has been demonstrated to be an
important distance estimation technique.  It requires dividing the Doppler expansion
velocity of the PN, obtained from long-slit spectroscopy, by the angular expansion rate
of the nebula, measured by comparing two images separated by a time baseline of
several years.  Two epochs of images of PNe were obtained from the Very Large
Array (VLA) with a time baseline of about 6 years, and have resulted in increasingly

FIGURE 1.  A Hubble Space Telescope (HST) image of NGC 3242 (Balick, Hajian, Terzian,
Perinotto, Patriarchi) illustrating the structure of an ellipsoidal planetary nebula.



reliable distance estimates to 7 nebulae (Hajian et al., 1993; Hajian & Terzian 1995,
1996).  However, successfully application of this technique requires that one relate the
radial Doppler expansion rate to the observed tangential expansion. This is
straightforward for spherical nebulae, but for the most part distances to PNe with
complex morphologies remain inaccessible.  More recently using images from the
Hubble Space Telescope (HST), distance estimates to 5 more nebulae have been
obtained.  Using two techniques, the magnification method and the gradient method,
Palen et al. (2002) resolved distances to 3 PNe and put bounds on another.  Reed et al.
(1999) estimated the distance to a complex nebula (NGC 6543) by identifying bright
features and relying on a on a heuristic model of the structure of the nebula derived
from ground-based images and detailed long-slit spectroscopy (Miranda & Solf,
1992).  This work emphasized the utility of the model-based approach to reconciling
the measured radial expansion velocities to the observed tangential angular motions.

To accommodate complex PNe, we have adopted the approach of utilizing an
analytic model of the nebular morphology, which takes into account the physics of
ionization equilibrium and parameters describing the density distribution of the
nebular gas, the dimensions of the nebula, its expansion rate, and its distance from
earth.  Bayesian estimation of the model parameter values is then performed using
data consisting of images from the Wide Field Planetary Camera (WFPC2) on the
HST and long-slit spectra from the 4m telescopes at Kitt Peak National Observatory
(KPNO) and Cerro Tololo Interamerican Observatory (CTIO).  In our preliminary
work (Hajian & Knuth, 2001) we have demonstrated feasibility of this approach by
adopting a model describing the ionization boundary of a PN based on an assumed
prolate ellipsoidal shell (PES) of gas – the ionization-bounded PES model (IBPES)
(Aaquist & Kwok, 1996; Zhang & Kwok, 1998).  One of the difficulties we have
encountered is the fact that the forward computations of the complete IBPES model
are extremely time consuming.  For this reason, we have been investigating the utility
of adopting a hierarchical set of models, where each successive model captures a new
feature of the nebula neglected by the previous model.

A HIERARCHICAL SET OF MODELS

The inspiration of utilizing a finite hierarchical set of models comes in part from the
process of scientific advancement itself where each new theory, viewed as a model of
a given physical object or process, must explain the phenomena explained by the
previous theories in addition to describing previously unexplainable phenomena.  The
apparent utility of such a process is rooted in fact that hierarchical organization is a
very efficient means to constructing a system of great complexity.  In this application
we consider a series of three models approaching the uniform ellipsoidal shell model
(UES) of an ellipsoidal PN, which describes the PN as an ellipsoidal shell of gas of
uniform density.

The purpose of the first model is to perform a relatively trivial task - discover the
center of the PN in the image.  The second model is designed to discover the extent,



eccentricity and orientation of the PN.  Finally the third model works to estimate the
thickness of the ellipsoidal shell.  Each of these models treats the image of the nebula
as a two-dimensional object, which drastically minimizes the computational burden
imposed by working with a three-dimensional model.  As these models approach the
three-dimensional UES model they grow in complexity with increasing numbers of
parameters.  Several of these parameters are of course nuisance parameters of
relevance only to that specific model and necessary only to enable one to perform the
forward computations of creating an image of the nebula from hypothesized model
parameter values.  As the models grow in complexity, the forward computations
become more time consuming.  However, as some of the parameters have been well-
estimated by the previous models, both the dimension and the volume of the
hypothesis space to be searched grows smaller relative to the total hypothesis space of
the current model thus reducing the effort needed to approach the solution.

Methodology

The parameters for each of the three models to be presented were estimated by
maximizing the posterior probability found simply by assigning a Gaussian likelihood
and uniform priors.  To enable comparison of the models rather than the techniques
used to find an optimal solution, gradient ascent was used in each case to locate the
maximum a posteriori (MAP) solution.  Stopping criteria were defined so that if the
change in each of the parameter values from the previous iteration to the present were
less than a predefined threshold the iterations would terminate.  The thresholds
typically became more stringent for the more advanced models.  This is because
highly refined estimates obtained from a primitive model do not necessarily
correspond to higher probable solutions for a more advanced model.

Discovering the Center

Discovering the center of the PN is a straightforward task.  Many quick-and-dirty
solutions present themselves, with perhaps the most obvious being the calculation of
the center of mass of the intensity of the image.  This can typically place the center to
within several pixels in a 500x500 image.  However, several confounding effects can
limit the accuracy of this estimate.  First, the entire image is not used in the analysis.
The central star and its diffraction spikes are masked out so that those pixels are not
used.  Asymmetric placement of the mask with respect to the center of the nebula can
dramatically affect estimation of the center of mass.  In addition, by not masking the
central star and diffraction spikes similar problems can occur as these high intensity
pixels are rarely symmetric.  Furthermore, it is not assured that the star is situated in
the center of the nebula.  A second problem is that the illumination of the nebula may
not be symmetric, and third the nebula itself might not be symmetric.  As we are
currently focusing our efforts on well-defined ellipsoidal PNe, these two issues are
less relevant than the first.



FIGURE 2.  a. The planetary nebula IC 418 (Sahai, Trauger, Hajian, Terzian, Balick, Bond, Panagia,
Hubble Heritage Team).  b. The masked image ready for analysis.  Note that the regions outside the
nebula are not masked, as they are as important for determining the extent of the nebula as the image of
the nebula itself.

For this reason, we adopted a simple two-dimensional circular Gaussian
distribution as a model of the two-dimensional image of the nebular intensity.
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where Io is the overall intensity parameter, s  is the overall extent of the PN, and
),( yoxo  are the coordinates of the center of the nebula in the image.  While the fall-

off of the PN intensity is not Gaussian, the symmetry of the nebula and the symmetry
of the Gaussian work in concert to allow adequate estimation of the PN center.  In
practice this technique was acceptable, however it was found that the Gaussian
distribution could shift to try to hide some of its mass in masked out areas of the
image.  This was especially noticeable for nebulae asymmetrically situated in the
image so that the edge of the nebula was close to the edge of the image.  In this case, it
was found that the estimate of the center could be off by a few pixels.

As this is the first stage, we did not work to develop a more sophisticated model for
center estimation, although such a model will probably be useful to find the centers of
more complex non-ellipsoidal PNe.  Rather, the center estimates are refined by the
next model, which is designed to better describe the intensity distribution.

In summary, four parameters are estimated by the Gaussian model (Gauss): the
center (xo, yo), the general extent s , and the overall intensity Io.

Discovering the Extent, Eccentricity and Orientation

To determine the extent, eccentricity and orientation of the PNe, we must adopt a
more realistic model.  To first-order the ellipsoidal PNe look to be ellipsoidal patches
of light, for this reason we utilized a two-dimensional sigmoidal hat function defined
by
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where Io is the overall intensity parameter, a  is the intensity falloff at the edge of the
PN, xs  and ys  are extents of the PN along the minor and major axes, q  is the

orientation of the PN in the image and ),( yoxo  are the coordinates of its center.  Thus
three new parameters are estimated by the sigmoidal hat model (SigHat), and in
addition the three old parameters are refined.

Figure 3a shows the intensity profile of SigHat characterized by its relative uniform
intensity across the nebula with a continuously differentiable falloff.  The falloff
region allows the model to accommodate variability in location of the outer edge of
the PN in addition to aiding the gradient ascent method used to locate the optimal
solution.  Given initial estimates of the PN center and general extent, the algorithm
was able to identify these parameters with relative ease.

FIGURE 3.  a. Intensity profile of the sigmoid hat function (2) used to estimate extent, eccentricity and
orientation. b. Intensity profile of the dual sigmoid hat function (5) used to estimate the thickness of the
gaseous shell.

Discovering the Thickness

The effect of imaging a three-dimensional ellipsoidal shell of gas is to produce an
ellipsoidal patch surrounded by a ring of higher intensity.  To capture the thickness of
the shell without resorting to an expensive three-dimensional model, we model the



image as the difference of two sigmoidal hat functions with the thickness of the shell
being estimated as the difference in extent of the two functions
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where ),( yxS+  and ),( yxS- are the sigmoidal hat functions in (2), expect each has its
own falloff parameter +a , -a  and the extents are related by the thickness ratio D
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We call this model the dual sigmoidal hat model (SigHat2).  A typical profile is shown
in Figure 3b.

At this point the center, orientation, and extent parameters were taken to be well-
estimated and the focus was on determining the thickness ratio D  and estimating the
nuisance parameters I+ , I_, a+, and a_.  During the course of our investigation, we
found that the estimation of  I+ , I_ proved to be rather difficult with either highly
oscillatory steps or very slow convergence.  Investigation of the landscape of the
hypothesis space proved to be quite informative; as it was found that the MAP
solution was a top peak of a long narrow ridge.  This finding led us to employ a
transformation from the parameters I+ , I_ to
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With this reparameterization, the hypothesis space is transformed so that the highly
probable regions are not as long and narrow.  This was found to aid convergence
eliminating the oscillatory steps and allowing the solution to converge more quickly to
the higher probability regions.  SigHat2 estimates only five parameters, the nuisance
parameters Ia, Ib, +a , -a , and the thickness D .

PERFORMANCE

There are three aspects important to determining the degree to which performance
has been improved by taking this hierarchical approach.  First, it is expected that the
speed at which optimal estimates can be obtained would be increased.  Second, we
might expect that the increase in speed comes at the cost of accuracy, however this
accuracy could presumably be regained by applying the ultimate model for a minimal
number of additional iterations.  Third, by employing a set of hierarchical models we
can rule out regions of the hypothesis space that are irrelevant and avoid the
difficulties of local maxima.  This aspect is extremely important in complex estimation
tasks where the hypothesis space may be riddled with local maxima.  Due to the high-



dimensionality of the spaces involved, the existence, number and location of these
local maxima is almost impossible to demonstrate explicitly.   However, we expect
that the set of models applied hierarchically will result in fewer occurrences of non-
optimal solutions than the ultimate model applied alone.

Evaluation Methodology

The same method to obtain an optimal estimate, gradient ascent, was used for each
model to assure that the utility of the models themselves were being compared rather
than the optimization technique.  All code was written and executed in Matlab 6.1
Release 12.1 and run on the same machine (Dell Dimension 8200, Windows 2000,
Pentium 4, 1.9 GHz, 512K RAM).

The models were tested on four synthetic PN images (350 x 400 pixels) constructed
using the UES model.  Figure 1a shows one such synthetic data set (Case 1).  Figures
1b, c, and d show the three results from the models Gauss, SigHat and SigHat2
respectively.  Note that Gauss has located the center of the PN and its general extent.
SigHat has effectively captured its eccentricity, orientation and the extent of the
projections of its major and minor axes.  Finally SigHat2 has made an estimate of the
thickness of the gaseous shell.  This estimate however is not as well defined as the
others due to fact that the meaning of the shell thickness in the UES model is
qualitatively different than the thickness in the SigHat2 model.  One can look at
progressing from SigHat2 to UES as a paradigm shift, which will ultimately result in a
much better description of the bright ring in the image.

FIGURE 5.  a. Synthetic image of PN made from parameterized UES model. b. Gaussian model used
to discover center of the PN.  c. Sigmoid hat model capturing extent, eccentricity and orientation.  d.
Dual sigmoid hat model estimating the thickness of the nebular shell.  Note that as the dual sigmoid hat
model and the UES model implement thickness differently the match cannot be perfect.

Rates of Convergence

As expected the amount of time required to complete an iteration of the gradient
ascent step varied from one model to the next.  Gauss required an average of 6.76
s/iteration, whereas SigHat required an average of 14.74 s/iteration, and SigHat2
required an average of 12.85 s/iteration.  Although the SigHat2 is more complex than
SigHat, fewer parameters are being updated, as the center position, extent,
eccentricity, and orientation are assumed to be well estimated and are held constant.



In contrast, one step of the UES model used to generate the synthetic images requires
on the order of one half hour of time under identical circumstances for a single
iteration depending on the spatial extent of the PN in the image.

TABLE 1.  Iterations Required for Convergence

Trial Gauss SigHat SigHat2
SigHat
Alone

1 20 14 16 42

2 21 21 17 39

3 24 50 7 X

4 36 36 13 61

Avg Iters 25.67 23.67 15.33 47.33

Avg Time 173.83 s 350.33 s 197.62 s 699.51 s

Table 1 shows the number of iterations required for each model to sufficiently
converge for the four cases considered.  The model SigHat was started using as initial
conditions those estimated by Gauss, and similarly for SigHat2, which followed
SigHat.  In addition, we tested SigHat alone without the aid of Gauss to determine
whether the hierarchical progression actually improved the rate of convergence.  Case
3 proved to be difficult due to the object’s small size in the image and the specific
combination of its orientation and eccentricity.  We found that SigHat alone was
unable to obtain a solution.  For this reason the averages at the bottom of the table
reflect only the three cases where all algorithms were successful.  In each case SigHat
took longer to converge when applied alone than when it was preceded by Gauss, with
an average of 699.51s as compared to 524.16s for the sum of Gauss and SigHat.

Goodness of Fit

The hierarchical application of the models also improved the accuracy of the
estimates as can be seen in Table 2 which shows the goodness of fit measured by

)log(likelihood- , where smaller numbers correlate with higher probability solutions.
Note that comparisons across trials are meaningless as the )log(likelihood  is not
normalized and is dependent on the extent of the object in the image.  This is evident
in case 3 where the fit was relatively poor and the object's extent was small with
respect to the dimension of the image.  Most important is the comparison between the
results for SigHat and SigHat Alone.  In all three cases, the goodness of fit for SigHat
run alone was worse than that for SigHat when preceded by Gauss.  This demonstrates
that not only is it faster to apply the models hierarchically, but the results obtained
better describe the data.

Throughout the course of these experiments it was found that local maxima do exist
in the hypothesis space and that the models can become stuck.  This was even more
problematic when applied to real images.  For example, the SigHat model with its
limited extent can easily become attached to the high intensity regions in the shells of



TABLE 2.  Goodness of Fit as measured by: - log(likelihood)

Case Gauss SigHat SigHat2
SigHat
Alone

1 5029 1868 751 2332

2 7024 2055 1137 2790

3 1485 205 423 X

4 4343 317 244 340

PNe that possess sufficient inclination to produce the effect.  For example consider the
high intensity region in the limb of IC418 near the top edge of the picture in Figure
6a).  SigHat can become trapped covering this high-intensity region.  Local maxima
are especially a problem for SigHat2, which can hide in a dark region outside the PN
by making itself invisible, i.e. equating I+ and I_ while minimizing the shell thickness.
Another interesting hiding behavior was observed with the SigHat model, which could
settle inside the central masked region of Figure 6a.  We have found that this
misbehavior is avoided by first capturing the center and general extent with Gauss.
Figure 6 below shows the results of applying the hierarchy of models to IC418.

FIGURE 6.  a. IC418 masked for analysis. b. Gauss is used to discover the center and general extent of
the object.  c. SigHat captures its extent, eccentricity and orientation.  d. Finally SigHat2 estimates the
thickness of the nebular shell.  This estimate is difficult as the intensity of IC418 apparently varies as a
function of latitude, however this is most likely due to the inclination of the PN - a feature not captured
by SigHat2.  The thickness estimate obtained nevertheless places us in the correct region of parameter
space, which will facilitate more sophisticated analyses.

Estimates of Parameters

The models were quite capable of estimating the parameters to accuracies much
greater than what is needed to aid the higher order models.  Table 3 shows the
evolution of the parameter estimates for Case 2.  Note that the values of most of the
parameters are frozen for SigHat2.  All estimates are within acceptable ranges of error
(less than 5%), especially as they are only being used to obtain ballpark estimates for
use with higher-order three-dimensional models.  The larger errors in the extent and
the shell thickness are due to the different ways in which the models use these
parameters to create the images.  That is, these parameters quantify very different
concepts and hence are not perfectly reconcilable.



TABLE 3.  Evolution of Parameter Estimates

Gauss SigHat SigHat2 True Values Percent Error

xo = 169.778 169.965 169.965 170 0.02%

yo = 212.492 209.806 209.806 210 0.09%

sx = 117.467 117.467 120 2.11%
s = 99.331

sy = 173.117 173.117 180.53 4.10%

q = 0.2509 0.2509 0.25 0.36%

D = 0.671 0.66 1.67%

As expected we found that the orientation was quite difficult to detect as the
projected image of the object became more circular, either due to the eccentricity of
the object or its inclination toward or away from the viewer.  However, an elliptical
nebula does not quite have an elliptical high-intensity ring when the object is inclined.
The approximate eccentricity of the central region is typically higher than that of the
outer edge of the nebula, as can be seen in IC418 in the region of the higher intensity
regions of the projected shell.  For this reason, it is probably wise to continue to
estimate the orientation in SigHat2 as the shape of the darker inner region of the
nebula provides more information about the orientation than the bright outer regions.

DISCUSSION

The idea of using a hierarchy of models to understand a physical system is based on
the observation that present scientific theories are built on a framework of earlier
theories.  Each new layer of this framework must explain a new phenomenological
aspect of the system in addition to everything that was explained by previous theories.
There are of course fits and starts as a paradigm shift may qualitatively change the
direction taken by this hierarchical progression.  Yet even in such cases, the old
theories are quantitatively sufficient to describe the phenomena that they were
designed to model.  Hierarchical organization is well known to be an efficient means
to generating complex systems and, as it is a useful technique in theory building, we
have chosen to examine its usefulness in efficient parameter estimation.  The
particular hierarchical succession of models employed in this work was chosen to
successively estimate larger and larger numbers of parameters approaching the
uniform ellipsoidal shell model of a PN.

We found that not only are the results obtained using a hierarchical set of models
more accurate, but they are also obtained more quickly.  We expect that as we
progress to the UES model and then the IBPES model the observed speed-up and
accuracy increase will become even more significant as these models represent the PN
as a three-dimensional object, which requires a substantial increase in computational
effort.  Furthermore, by hierarchically applying a set of models, which better and
better describe the object, we minimize the possibility that the estimate may converge
to a locally optimal solution.



Another advantage of the hierarchical design is that it is modular by nature, which
easily enables us to simply replace a given algorithm in the set with a more efficient
one.  This idea is quite attractive, as there exist automated techniques such as
AutoBayes for constructing and implementing algorithms from models (Fischer &
Schumann 2002).  This approach may allow one to construct an intelligent data
understanding system, which starts with low-level models such as categorizers and
grows to the level of highly specialized, highly informative algorithms.
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